LORENA DAMASIO CARDOSO

AUTHOR: LORENA DAMASIO CARDOSO

TITLE: HISTOLOGICAL EVALUATION OF ELASTIC CARTILAGES SUBMITTED TO DIFFERENT ALKALINE CONSERVATION AND TREATMENT PROCESSES (AVALIAÇÃO HISTOLÓGICA DE CARTILAGENS ELÁSTICAS SUBMETIDAS A DIFERENTES PROCESSOS DE CONSERVAÇÃO E TRATAMENTO ALCALINO)

ADVISOR: Prof. Dr. Valcinir Aloisio

DEFENSE DATE: 10/01/2018

 

ABSTRACT:

The loss of tissue because of congenital defects, pathological processes or traumas stimulated the development of tissue engineering, with the aim of repairing or replacing damaged tissues or organs. Due to its elastic properties, cartilaginous tissue has been widely used in reconstructive procedures. The use of this tissue as biomaterial mainly aims at maintaining the three-dimensional properties of the matrix, prioritizing structural, mechanical and biological support for the cells and allowing adequate remodeling. The ideal is to obtain a biomaterial with characteristics of biocompatibility, biofunctionality and mechanical resistance. In this sense, treatments were developed in order to minimize possible inflammatory processes and rejection of the biomembrane at the receptor. The aim of this study was to compare the histological changes in elastic cartilages of the external ear of bovines, submitted to different treatments of conservation with chemical treatment by alkaline solution. The samples were cleaned, standardized and divided into control group and treatment groups. The conservation methods were evaluated with supersaturated salt solution, supersaturated sugar solution, glycerine, formalin and alkaline solution. The samples were maintained in storage media for 60 days and in alkaline solution for 72 hours. After, they underwent preparation, analysis and interpretation on histological slides. In each treatment were evaluated microstructureal parameters, as the maintenance of elastic fibers, fundamental amorphous substance and decellularization. When comparing to the other groups, we verified that the cartilages treated in alkaline solution had better decellularization rate, fundamental amorphous substance removal and mantainance of elastic fibers tridimensional structure. For this reason, this group was considered the most effective method in this study.

  Pdf ícone

COMPLETE TEXT